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2 M. Ekström et al.

1 Introduction

Let {Fθ, θ ∈ Θ} be a family of absolutely continuous distribution functions on
the real line, and denote the corresponding densities by {fθ, θ ∈ Θ}. For any
convex function φ on the positive half real line, the quantity

Sφ(θ) =

∫ ∞
−∞

φ

(
fθ(x)

fθ0(x)

)
fθ0(x)dx

is called the φ-divergence between the distributions Fθ and Fθ0 . The φ-
divergences, introduced by Csiszár (1963) as information-type measures,
have several statistical applications including in estimation. Although Csiszár
(1977) describes how this measure can also be used for discrete distributions,
we are concerned with the case of absolutely continuous distributions in the
present paper.

Let ξ1, ..., ξn−1 be a sequence of independent and identically distributed
(i.i.d.) random variables (r.v.’s) from Fθ0 , θ0 ∈ Θ. The goal is to estimate the
unknown parameter θ0. If φ(x) = − log x, then Sφ(θ) is known as the Kullback-
Leibler divergence between Fθ and Fθ0 . In this case, a consistent estimator of
this Sφ(θ) is given by

1

n− 1

n−1∑
i=1

φ

(
fθ(ξi)

fθ0(ξi)

)
= − 1

n− 1

n−1∑
i=1

log
fθ(ξi)

fθ0(ξi)
. (1)

Minimization of this statistic with respect to θ is equivalent to maximization of
the log-likelihood function,

∑n
i=1 log fθ(ξi). Thus, by finding a value of θ ∈ Θ

that minimizes (1), we obtain the well-known maximum likelihood estimator
(MLE) of θ0. Note, in order to minimize the right-hand side of (1) with respect
to θ, we do not need to know the value of θ0. On the other hand, for convex
functions other than φ(x) = − log x, a minimization of the left-hand side of
(1) with respect to θ would require the knowledge of θ0, the parameter that
is to be estimated. Thus, for general convex φ functions, it is not obvious
how to approximate Sφ(θ) in order to obtain a statistic that can be used for
estimating the parameters.

One solution to this problem was provided by Beran (1977), who proposed
that fθ0 could be estimated by a suitable nonparametric estimator f̂ (e.g.
a kernel estimator) in the first stage, and in the second stage the estimator
of θ0 should be chosen as any parameter value θ ∈ Θ that minimizes the
approximation

Ŝφ(θ) =

∫ ∞
−∞

f̂(x)φ

(
fθ(x)

f̂(x)

)
dx (2)

of Sφ(θ). In the estimation method suggested by Beran (1977), the function
φ(x) = 1

2 |1−
√
x|2 was used, and this particular case of φ-divergence is known

as the squared Hellinger distance. Read & Cressie (1988, p. 124) put forward
a similar idea based on power divergences, and it should be noted that the
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A class of asymptotically efficient estimators based on sample spacings 3

family of power divergences is a sub-class of the family of φ-divergences. The
general approach of estimating parameters by minimizing a distance (or a di-
vergence) between a nonparametric density estimate and the model density
over the parameter space have been further extended by subsequent authors,
and many of these procedures combine strong robustness features with asymp-
totic efficiency. See Basu et al. (2011) and the references therein for details.

Here we propose an alternate approach obtained by approximating Sφ(θ),
using the sample spacings. Let ξ(1) ≤ ... ≤ ξ(n−1) denote the ordered sample
of ξ1, ..., ξn−1, and let ξ(0) = −∞ and ξ(n) = ∞. For an integer m = m(n),
sufficiently smaller than n, we put k = n/m. Without loss of generality, when
stating asymptotic results, we may assume that k = k(n) is an integer, and
define non-overlapping mth order spacings as

Dj,m(θ) = Fθ(ξ(jm))− Fθ(ξ((j−1)m)), j = 1, ..., k.

Let

Sφ,n(θ) =
1

k

k∑
j=1

φ(kDj,m(θ)), θ ∈ Θ. (3)

In Equation (3), the reciprocal of the argument of φ is related to a non-
parametric histogram density estimator considered in Prakasa Rao (1983,
Section 2.4). More precisely, gn(x) = (kDj,m(θ))−1, for Fθ(ξ((j−1)m)) ≤
x < Fθ(ξ(jm)), is an estimator of the density of the r.v. Fθ(ξ1), i.e., of
g(x) = fθ0(F−1θ (x))/fθ(F

−1
θ (x)), where F−1θ (x) = inf{u : Fθ(u) ≥ x}. When

both k and m increase with the sample size, then, for large n,

kDj,m(θ) ≈
fθ(ξ(j−1)m+bm/2c)

fθ0(ξ(j−1)m+bm/2c)
, j = 1, ..., k, (4)

where bm/2c is the largest integer smaller than or equal to m/2. Thus, in-
tuitively, as k,m → ∞ as n → ∞, Sφ,n(θ) should converge in probability to
Sφ(θ). Furthermore, since φ is a convex function, by Jensen’s inequality, we
have Sφ(θ) ≥ Sφ(θ0) = φ(1). This suggests that if the distribution Fθ is a
smooth function in θ, an argument minimizing Sφ,n(θ), θ ∈ Θ, should be close
to the true value of θ0, and hence be a reasonable estimator.

An argument θ = θ̂φ,n which minimizes Sφ,n(θ), θ ∈ Θ, will be referred to
as a Generalized Spacings Estimator (GSE) of θ0. When convenient, a root of
the equation (d/dθ)Sφ,n(θ) = 0 will also be referred to as a GSE.

By using different functions φ and different values of m, we get various
criteria for statistical estimation. The ideas behind this proposed family of es-
timation methods generalizes the ideas behind the maximum spacing (MSP)
method, as introduced by Ranneby (1984); the same method was introduced
from a different point of view by Cheng and Amin (1983). Ranneby derived
the MSP method from an approximation of the Kullback-Leibler divergence
between Fθ and Fθ0 , i.e., Sφ(θ) with φ(x) = − log x, and defined the MSP esti-
mator as any parameter value in Θ that minimizes (3) with φ(x) = − log x and
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4 M. Ekström et al.

m = 1. This estimator has been shown, under general conditions, to be consis-
tent (Ranneby 1984; Shao & Hahn 1996; Ekström 1996, 1998) and asymptoti-
cally efficient (Shao & Hahn 1994; Ghosh & Jammalamadaka 2001). Based on
the maximum entropy principle, Kapur & Kesavan (1992) proposed to esti-
mate θ0 by selecting the value of θ ∈ Θ that minimizes (3) with φ(x) = x log x
and m = 1. With this particular choice of φ-function, Sφ(θ) becomes the
Kullback-Leibler divergence between Fθ0 and Fθ (rather than Fθ and Fθ0).
We refer to Ekström (2008) for a survey of estimation methods based on spac-
ings and the Kullback-Leibler divergence. Ekström (1997, 2001) and Ghosh
& Jammalamadaka (2001) considered a subclass of the estimation methods
proposed in the current paper, namely the GSEs with m = 1. Under gen-
eral regularity conditions it turns out that this subclass produces estimators
that are consistent and asymptotically normal, and that the MSP estimator,
which corresponds to the special case when φ(x) = − log x, has the smallest
asymptotic variance in this subclass (Ekström 1997; Ghosh & Jammalamadaka
2001). Estimators based on overlapping (rather than non-overlapping) mth or-
der spacings was considered in Ekström (1997, 2008), where small Monte Carlo
studies indicated, in an asymptotic sense, that larger orders of spacings are
always better (when φ(x) is a convex function other than the negative log
function). Menéndez et al. (1997, 2001a, b) and Mayoral et al. (2003) con-
sider minimum divergence estimators based on spacings that are related to
our GSEs. In the asymptotics they use only a fixed number of spacings, and
their results suggests that GSEs will not be asymptotically fully efficient when
k in (3) is held fixed.

In the present paper it is shown that GSEs are consistent and asymp-
totically normal under general conditions. In contrast to the aforementioned
papers, we allow both the number of spacings, k, and the order of spacings, m,
to increase to infinity with the sample size. We show that if both of them do
tend to infinity, then there exists a class of asymptotically efficient GSEs that
we call the Minimum Power Divergence Estimators (MPDEs). In contrast, if
m is held fixed, then the only asymptotically optimal GSE is the one based on
φ(x) = − log x. The main results are stated in the next section, followed by a
simulation study assessing (i) the performance of these estimators for different
m and n and (ii) the robustness of these estimators under contamination. In
the latter case we also assess a suggested data-driven rule for choosing the
order of spacings, m. Detailed proofs are to be found in the Appendix and the
online Supplementary Material.

2 Main results

In this section, we state the main results and the assumptions that are needed.
Unless otherwise stated, it will henceforth be assumed that ξ1, ..., ξn−1 are i.i.d.
r.v.’s from Fθ0 , θ0 ∈ Θ.

We will prove the consistency of the GSEs under the following assumptions:
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A class of asymptotically efficient estimators based on sample spacings 5

Assumption 1 The family of distributions {Fθ(·), θ ∈ Θ} have common sup-
port, with continuous densities {fθ(·), θ ∈ Θ}, and Fθ(x) 6= Fθ0(x) for at least
one x when θ 6= θ0.

Assumption 2 The parameter space Θ ⊂ R contains an open interval of
which θ0 is an interior point, and Fθ(·) is differentiable with respect to θ.

Assumption 3 The function φ(t), t > 0, satisfies the following conditions:
(a) it is strictly convex;
(b) min{0, φ(t)}/t→ 0 as t→∞;
(c) it is bounded from above by ψ(t) = c1(t−c2 + tc3) for all t > 0, where c1, c2,

and c3 are some nonnegative constants;
(d) it is twice differentiable.

Assumption 3 is valid for a wide class of convex functions including the
following,

φ(x) = φλ(x) =

λ−1(1 + λ)−1(xλ+1 − 1), if λ 6= −1, 0,
− log x, if λ = −1,
x log x, if λ = 0,

(5)

where the cases λ = −1 and λ = 0 are given by continuity, i.e., by noting that
limλ→0(xλ − 1)/λ = log x.

Theorem 1 Under the Assumptions 1-3, when m > c2 is fixed, or m → ∞
such that m = o(n), the equation (d/dθ)Sφ,n(θ) = 0 has a root θ̂φ,n with a
probability tending to 1 as n→∞, such that

θ̂φ,n = θ̂φ,n(ξ1, ..., ξn−1)
p−→ θ0.

For the purpose of the next theorem, we will use the notation f(x, θ) for
the density fθ(x), and we denote its partial derivatives by

fij(x, θ) =
∂i+j

∂xi∂θj
f(x, θ).

Let W1,W2, ... be a sequence of independent standard exponentially dis-
tributed r.v.’s, Gm = W1 + ...+Wm, and Ḡm = m−1Gm.

We then have the following important result:

Theorem 2 Let m = o(n). In addition to Assumptions 1-2, assume the fol-
lowing conditions:
(i) The function φ is a strictly convex function and thrice continuously differ-

entiable.
(ii) The quantities V ar(W1φ

′(Ḡm)), E(W 2
1 φ
′′(Ḡm)), and E(W 3

1 φ
′′′(Ḡm)) exist

and are bounded away from zero.
(iii) The density function f(x, θ), the inverse F−1θ (x), and the partial derivatives

f10 and f11 are continuous in x at θ = θ0, and f01, f02, and f03 are
continuous in x and θ in an open neighborhood of θ0.
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6 M. Ekström et al.

(iv) The Fisher information,

I(θ) =

∫ ∞
−∞

[
f01(x, θ)

f(x, θ)

]2
f(x, θ)dx,

takes values in the interval (0,∞) for θ in a neighborhood of θ0.

Then, for any consistent root θ̂φ,n of (d/dθ)Sφ,n(θ) = 0, we have

lim
n→∞

sup
x

∣∣∣∣∣P(√n(θ̂φ,n − θ0) ≤ x
)
− Φ

(
x

√
I(θ0)

em(φ)

)∣∣∣∣∣ = 0,

where Φ is the standard normal cumulative distribution function,

em(φ) = σ2
φ

(
E
(
Ḡ2
mφ
′′(Ḡm)

))−2
,

σ2
φ = mV ar

(
Ḡmφ

′(Ḡm)
)

+ (2m+ 1)µ2
m − 2mµmE

(
Ḡ2
mφ
′(Ḡm)

)
, (6)

and
µm = E

(
W1φ

′(Ḡm)
)

= E
(
Ḡmφ

′(Ḡm)
)
.

The theorems will be proved using proof methods related to those of, e.g.,
Lehmann & Casella (1998) for the MLE. A generalization to the multiparam-
eter case is possible, much like in the case of maximum likelihood estimation.
However, as in Lehmann & Casella (1998) for the MLE, this will require some-
what more complex assumptions and proofs and we refrain from attempting
it here.

For the case m = 1 and by assuming that limx→0 φ
′(x)x2e−x =

limx→∞ φ′(x)x2e−x = 0, Ekström (1997) and Ghosh & Jammalamadaka
(2001) showed that em(φ) ≥ 1, with equality if and only if φ(x) =
a log x + bx + c, for some constants a, b, and c. That this inequality holds
true for general m can be seen by integrating by parts, i.e., assuming that
limx→0 φ

′(x/m)xm+1e−x = limx→∞ φ′(x/m)xm+1e−x = 0, we get(
E(Ḡ2

mφ
′′(Ḡm))

)2
=
(
mE(Ḡ2

mφ
′(Ḡm))− (m+ 1)µm

)2
=
(
mCov

(
Ḡmφ

′(Ḡm), Ḡm
)
− µm

)2
= m2

(
Cov

(
Ḡmφ

′(Ḡm), Ḡm
))2

+ (2m+ 1)µ2
m − 2mµmE(Ḡ2

mφ
′(Ḡm))

≤ σ2
φ,

where the inequality on the right-hand side follows by noting that(
Cov

(
Ḡmφ

′(Ḡm), Ḡm
))2 ≤ V ar(Ḡmφ′(Ḡm)

)
V ar(Ḡm)

and V ar(Ḡm) = m−1. Hence, em(φ) = σ2
φ

(
E(Ḡ2

mφ
′′(Ḡm))

)−2 ≥ 1, with
equality if and only if xφ′(x) = a + bx or, equivalently, if and only if
φ(x) = a log x + bx + c, where a < 0. It should be observed that the cor-
responding estimator θ̂φ,n does not depend on the chosen values of a < 0, b,
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A class of asymptotically efficient estimators based on sample spacings 7

and c. Thus, without loss of generality we may choose a = −1 and b = c = 0,
i.e., for m fixed, the asymptotically optimal estimator θ̂φ,n is based on the
function φ(x) = − log x. If however, we let m → ∞, then the asymptotically
optimal estimator is no longer unique. For example, let us consider the family
of power divergences (Read & Cressie 1988; Pardo 2006) given by

Tλ(θ) =
1

λ(λ+ 1)

∫ ∞
−∞

((
fθ(x)

fθ0(x)

)λ+1

− 1

)
fθ0(x)dx,

where the cases λ = −1 and λ = 0 are given by continuity, i.e.,

T−1(θ) = lim
λ→−1

Tλ(θ) =

∫ ∞
−∞

(
− log

(
fθ(x)

fθ0(x)

))
fθ0(x)dx

and
T0(θ) = lim

λ→0
Tλ(θ) =

∫ ∞
−∞

(
fθ(x)

fθ0(x)
log

(
fθ(x)

fθ0(x)

))
fθ0(x)dx,

where T−1(θ) is the Kullback-Leibler divergence and T0(θ) is the reversed
Kullback-Leibler divergence (cf. Pardo & Pardo 2000).

If we set φ(x) = φλ(x), which is defined in Equation (5), then note that
Tλ(θ) = Sφλ

(θ), i.e., the family of power divergences is a sub-class of the fam-
ily of φ-divergences. The divergence Tλ(θ) = Sφλ

(θ) is estimated by Sφλ,n(θ),
and Theorem 1 establishes the existence of a consistent root of the equation
(d/dθ)Sφλ,n(θ) = 0. The next result asserts that any such sequence is asymp-
totically normal and efficient when k,m→∞ as n→∞.

Corollary 1 Let m→∞ such that m = o(n). Suppose that Assumptions 1-2
and conditions (iii) and (iv) of Theorem 2 hold true, and that the function φλ
is defined by (5) for some λ ∈ (−∞,∞). Then, for any consistent root θ̂λ,n of
(d/dθ)Sφλ,n(θ) = 0, we have

√
n(θ̂λ,n − θ0)

d−→ N

(
0,

1

I(θ0)

)
as n→∞.

Such a sequence θ̂λ,n of roots is typically provided by arg minθ∈Θ Sφλ,n(θ),
and in this case the estimator may be referred to as a Minimum Power Di-
vergence Estimator (MPDE). Another family of divergence measures was pro-
vided by Rényi (1961), and extended in Liese & Vajda (1987). These are given
by

Rα(θ) =
1

α(α− 1)
log

∫ ∞
−∞

fθ(x)αfθ0(x)1−αdx,

where the cases α = 0 and α = 1 are given by continuity, i.e., R0(θ) =
limα→0Rα(θ) = T−1(θ) and R1(θ) = limα→1Rα(θ) = T0(θ). Thus, R0(θ)
and R1(θ) are Kullback-Leibler divergences and belong to the family of
power divergences. When α 6= 0, 1, Rα(θ) may be estimated by α−1(α −
1)−1 logSφα,n(θ), where φα(x) = xα, and if λ = α − 1 then note that
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8 M. Ekström et al.

arg minθ∈Θ α
−1(α − 1)−1 logSφα,n(θ) = arg minθ∈Θ Sφλ,n(θ). Thus, each

MPDE may also be regarded as a minimum Rényi divergence estimator.
The Hellinger distance between Fθ and Fθ0 is given by

H(θ) =

(
1

2

∫ ∞
−∞

(
fθ(x)1/2 − fθ0(x)1/2

)2
dx

)1/2

,

and may be estimated by (1+Sφ,n(θ))1/2, where φ(x) = −x1/2. In this case, we
have, for λ = −1/2, arg minθ∈Θ(1 + Sφ,n(θ))1/2 = arg minθ∈Θ Sφλ,n(θ). Thus
the MPDE with λ = −1/2 may also be referred to as a minimum Hellinger
distance estimator.

It is desired to have statistical estimation procedures that perform well
when an assumed parametric model is correctly specified, thereby attaining
high efficiency at the assumed model. A problem is that assumed parametric
assumptions are almost never literally true. Thus, in addition, it is desired to
have estimation procedures that are relatively insensitive to small departures
from the model assumptions, and that somewhat larger deviations from the
model assumptions do not cause a “catastrophe” (Huber & Ronchetti 2009).
Procedures satisfying these features are called robust. Due to its relationship
with the estimator suggested by Beran (1977), we conjecture that our mini-
mum Hellinger distance estimator, i.e. the MPDE with λ = −1/2, is robust
(in the sense of Beran (1977) and Lindsay (1994)). In addition, by arguments
put forward in Lindsay (1994), we conjecture that GSEs based on bounded
φ functions are robust with respect to contaminations of the original data
(cf. Mayoral et al. 2003). In the next section, we consider the MPDE with
λ = −1/2 and apply Monte Carlo simulations to compare its performance
with those of the MLE and the MPDEs with λ = −1 and −0.9.

3 A simulation study

In this section we explore the finite sample properties of the Minimum Power
Divergence Estimators (MPDEs) θ̂λ,n = arg minθ∈Θ Sφλ,n(θ), where φλ is de-
fined in Equation (5).

First we consider estimating the mean θ of a N(θ, 1) distribution and com-
pare the root mean square errors (RMSEs) of various MPDEs, with the RMSE
of the MLE. These are shown in Fig. 1. MPDEs are computed for λ = −1,−0.9,
and −0.5, and for all values of m, the order of the spacings, that are divisors
of n. We define a relative RMSE of an MPDE to be its RMSE divided by
the RMSE of the MLE. Each RMSE was estimated from 1,000 Monte Carlo
samples with n = 840 from the N(θ, 1) distribution with θ = 0. We present rel-
ative RMSEs for m up to 150, because when m is larger than that the relative
RMSEs tend to be quite large in comparison. From Fig. 1, we see that MPDEs
with λ equal to −1 or −0.9 are about as good as the MLE for comparatively
small values of m (and less well for largerm). The MPDE with λ = −0.5 is not
quite as good in terms of RMSE. For example, with an optimally chosen m, it
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A class of asymptotically efficient estimators based on sample spacings 9

had an RMSE about 0.5% larger than that of the MLE. The simulation results
indicate that the optimal choice of m is 15, 15, and 14 for λ = −1,−0.9, and
−0.5, respectively (although for λ = −1 and −0.9 there are about ten other
candidates, respectively, that perform almost as good).
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λ = − 0.5

Fig. 1 RMSEs for different MPDEs relative the RMSE of the MLE when estimating the
mean of a normal distribution. The relative RMSE of an MPDE is its RMSE divided by the
RMSE of the MLE.

Next we consider the issue of stability/robustness of these estimators. It
is known that the MSP estimator (Cheng & Amin 1983; Ranneby 1984), i.e.,
the MPDE with λ = −1 and m = 1, much like the MLE, suffers from lack
of stability under even small deviations from the underlying model i.e. the
distributions of the MSP and ML estimators can be greatly perturbed if the
assigned model is only approximately true. This is demonstrated in a simula-
tion study by Nordahl (1992), and by Fujisawa & Eguchi (2008) in a numerical
study on the MLE. As in Nordahl (1992) we will assume a proportion 1 − ε
of the data is generated from a normal distribution, while a proportion ε is
generated by some unknown mechanism that produces “outliers.” For exam-
ple, measurements are made, which are 95% of the time correct, while 5% of
the time operator reading/writing errors are made or the recording instru-
ment malfunctions. Therefore, we assume that a random sample ξ1, ..., ξn−1 is
generated from an ε-contaminated normal distribution G(x− θ0), where

G(x) = (1− ε)Φ(x) + εH(x),
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λ = − 0.5

MLE

Fig. 2 RMSEs for the MLE and for different MPDEs when estimating the mean of a normal
distribution under contamination, where ε denotes the level of contamination. Note, black
plot symbols are often (partly) hidden behind green plot symbols, and red plot symbols
behind blue ones.

in which H(x) denotes an arbitrary distribution that models the outliers and
ε is the level of contamination. Of interest is to estimate θ0, the mean of the
observations in the case when no recording errors occur. If nε is rather small,
we may have few observations from H, making it difficult to assess the model
for H. In such a case, instead of modelling the mixture distribution G, one
may (wrongly) assume that all observations come from Φ(x− θ) with θ = θ0,
and then use an estimation method that provides a good estimate of θ0 even
in presence of outliers coming from H. That is, robust estimation aims at
finding an estimator θ̂ that efficiently estimates θ0 even though the data is
contaminated by an outlier distribution H (Fujisawa & Eguchi 2008).

In our Monte Carlo simulation, we used H(x) = Φ((x− ρ)/τ), τ > 0, with
ρ = 10 and τ = 1. For each ε = 0.0, 0.1, ..., 0.4, we generated 1,000 Monte
Carlo samples with n = 840 from G(x−θ0) with θ0 = 0, and for every sample,
the MLE of θ0 was computed using the model Fθ(x) = Φ(x − θ). MPDEs
for this case were also computed for λ = −1,−0.9, and −0.5, and for the
previously found optimal values of m for the respective values of λ. For each
level of contamination, we used the 1,000 samples for computing estimated
RMSEs for the respective estimators of θ0. The resulting RMSEs are shown in
Fig. 2. In case of contamination, we see that the MPDEs with λ equal to −0.9
or −0.5 are superior to the MLE and the MPDE with λ = −1. In other words,
the MLE and MPDEs such as the MSP estimator, which all can be derived
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λ = − 0.9

λ = − 0.5

One−Step MHDE

Fig. 3 RMSEs for the one-step MHDE and for two MPDEs, when estimating the mean of
a normal distribution under contamination and where ε is the level of contamination. Note,
red and blue plot symbols are sometimes (partly) hidden behind black plot symbols.

from the Kullback-Leibler divergence, perform poorly under contamination,
and other MPDEs are to be preferred.

Looking at Fig. 1, it is clear that the choice of m, the order of spacings,
is important for the quality of MPDE estimators. We now propose a data-
based approach for choosing m for MPDEs (and more generally for GSEs).
No asymptotic optimality is claimed for the approach. The main purpose is
rather to provide sensible answers for finite sample sizes. For a given λ (or
φ-function), let θ̂m denote the MPDE (or GSE) using the order of spacings m.
The suggested approach is given by the following algorithm:

Step 1: Compute θ̂1.

Step 2: For r in 1, ..., R: Draw a bootstrap sample x?r,1, ..., x?r,n−1 from
Fθ̂1 . For some set of positive integers,M, compute θ̂?r,m for each m ∈ M,
where θ̂?r,m denotes the rth bootstrap replicate of θ̂m.

Step 3: Choose mopt = arg minm∈M
1
R

∑R
r=1

(
θ̂?r,m − θ̂1

)2
.

Under the same settings as in Fig. 2 and with m chosen according to
the above algorithm, with M defined as the set of divisors of n, we consider
two MPDEs, with λ = −0.9 and −0.5, respectively. We compare these with
Karunamuni & Wu’s (2011) one-step minimum Hellinger distance estimator
(MHDE), obtained from a one-step Newton-Raphson approximation to the
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12 M. Ekström et al.

solution of the equation Ŝ′φ(θ) = 0, where Ŝφ(θ) is defined as in (2), with
φ(x) = 1

2 |1 −
√
x|2 and f̂ a kernel density density estimator. Karunamuni &

Wu (ibid.) show that their one-step MHDE has the same asymptotic behavior
as Beran’s (1977) MHDE, as long as the initial estimator in the Newton-
Raphson algorithm is reasonably good, and that it retains excellent robustness
properties of the MHDEs. In our simulations we used the median as the initial
estimator of θ0, and the kernel estimator was based on the Epanechnikov
kernel with bandwidth chosen to be (15e)1/5(π/32)1/10σ̂n−1/5, where σ̂ =
median{|ξi − median{ξj}|}/Φ(3/4) (cf. Basu et al. 2011, pp. 108-109). The
resulting RMSEs are shown in Fig. 3. When ε = 0, the MPDE with λ = −0.9
is the winner in terms of RMSE (in comparison with the MLE, the MPDE
estimators with λ = −0.9 and −0.5 and the one-step MHDE had RMSEs that
were about 0.0, 1.8, and 0.4 percent larger than that of the MLE, respectively).
For ε = 0.1, the one-step MHDE performs somewhat better than the two
MPDEs, but for ε = 0.2, 0.3, and 0.4, the most efficient estimator is the MPDE
with λ = −0.5. Under heavy contamination, i.e. for levels of contamination
equal to or larger than 0.3, both MPDEs are clearly more robust than the
one-step MHDE.

By Corollary 1, MPDEs are asymptotically normal and efficient under a
general set of regularity conditions. When applying an MPDE, a particular
value of λ needs to be chosen. In our simulations, we considered three choices,
λ = −1,−0.9, and −0.5. Much like the MLE, the MPDE with λ = −1 can
be greatly perturbed if the assigned model is only approximately true. In the
choice between λ = −0.9 and λ = −0.5, the former appears to provide better
estimates if there is no contamination, while the latter seems to give more
robust estimators when some contamination is suspected.

4 Concluding remarks

In this paper we propose classes of estimators, called Generalized Spacings Es-
timators or GSEs, based on non-overlapping higher order spacings and show
that under some regularity conditions, they are consistent and asymptotically
normal. Within these classes, we demonstrate the existence of asymptotically
efficient estimators, called MPDEs. Through simulations, we demonstrate that
they perform well also in moderate sample sizes relative to the MLEs. How-
ever, unlike the MLEs, some of these spacings estimators are quite robust
under contamination. In this article we also propose a data-driven choice for
the order of spacings, m, based on bootstrapping, and the Monte Carlo studies
indicate that this practical way of choosing m leads to MPDEs which perform
comparatively well and even much better at higher levels of contamination,
than the one-step MHDEs proposed in the literature. Moreover, the GSEs sug-
gested here can be suitably extended, and used in more general situations. For
example, by using mth nearest neighbor balls as a multidimensional analogue
to univariate mth order spacings, our proposed classes of estimators can be
extended to multivariate observations (Kuljus & Ranneby (2015) studied this
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A class of asymptotically efficient estimators based on sample spacings 13

problem for m = 1), but specifics need further exploration. Another possibility
is to define GSEs based on overlapping spacings of order m. The derivation of
the asymptotic distribution of such estimators is an open problem.

Appendix

To simplify the notation in the proofs, we will write S(θ), Sn(θ), and θ̂n rather
than Sφ(θ), Sφ,n(θ), and θ̂φ,n, respectively, and when θ = θ0, we use the
simplified notations Sn = Sn(θ0) and Dj,m = Dj,m(θ0). It should be noted
that Dj,m, j = 1, ..., k, are distributed as non-overlapping mth order spacings
from a uniform distribution.

Recall that W1,W2, ... are independent standard exponentially distributed
r.v.’s. Let Gj,m = W(j−1)m+1 + ... + Wjm and Ḡj,m = m−1Gj,m, j = 1, ..., k.
Note that G1,m, ..., Gk,m are i.i.d. gamma r.v.’s. To keep the notation simple,
we denote Gm = G1,m and Ḡm = m−1Gm.

Lemma 1 (Holst & Rao 1980) Let ϕ(u), defined on (0, 1), be continuous, ex-
cept possibly for finitely many u, and bounded in absolute value by an integrable
function. Then,

1

n

n∑
i=1

ϕ

(
i

n+ 1

)
→
∫ 1

0

ϕ(u)du, as n→∞.

Proposition 1 Assume that m > c2 is fixed or that m → ∞ such that m =
o(n). Then, under Assumptions 1 and 3, for any fixed θ 6= θ0,

P (Sφ,n(θ) > Sφ,n(θ0))→ 1 as n→∞.

Proof See the online Supplementary Material. ut

Proof of Theorem 1 The proof is very similar to that of Theorem 3.7 in
Lehmann & Casella (1998, p. 447), and therefore we omit the details. Note,
however, that in Lehmann & Casella (1998), the log-likelihood needs to be
replaced with Sn(θ), and the reference to Theorem 3.2 needs to be replaced
with Proposition 1 of the current paper. ut

Proof of Theorem 2 To keep notation simple we write Dj(θ) instead of Dj,1(θ).
Note that

Dj,m(θ) = D(j−1)m+1(θ) +D(j−1)m+2(θ) + ...+Djm(θ). (7)

Under condition (i) we have

0 = S′n(θ̂n) = S′n(θ0) + (θ̂n − θ0)S′′n(θ0) + 2−1(θ̂n − θ0)2S′′′n (θ̃0),

where θ̃0 lies between θ̂n and θ0. Hence,

√
n(θ̂n − θ0) =

√
nS′n(θ0)

−S′′n(θ0)− 2−1(θ̂n − θ0)S′′′n (θ̃0)
(8)
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14 M. Ekström et al.

Set gθ(u) = f01(F−1θ0
(u), θ)/f

(
F−1θ0

(u), θ
)
, and let Ũj denote a value in the

interval Ij = (Fθ0(X(j−1)), Fθ0(X(j))). We have,

√
nS′n(θ0) =

√
m√
k

k∑
j=1

m∑
l=1

kD(j−1)m+lφ
′(kDj,m)

D′(j−1)m+l(θ0)

D(j−1)m+l

=

√
m√
k

k∑
j=1

m∑
l=1

kD(j−1)m+lφ
′(kDj,m)gθ0(Ũ(j−1)m+l),

where the last equality follows by the mean value theorem. Set uj = (j −
1/2)/n. From the existence of the limiting distribution of the Kolmogorov-
Smirnov statistic, we have

|Ũj − uj | = Op(n
−1/2) as n→∞, uniformly in j. (9)

Keeping this in the mind and that k = n/m, we write

√
nS′n(θ0)=

√
m

{
1

m
√
k

k∑
j=1

m∑
l=1

[
nD(j−1)m+lφ

′(kDj,m)−µj,l,m
]
gθ0(u(j−1)m+l)

+
1

m
√
k

k∑
j=1

m∑
l=1

µj,l,mgθ0(Ũ(j−1)m+l)

+
1

m
√
k

k∑
j=1

m∑
l=1

[
nD(j−1)m+lφ

′(kDj,m)− µj,l,m
]

×
[
gθ0(Ũ(j−1)m+l)− gθ0(u(j−1)m+l)

]}
=
√
m {Ak +Bk + Ck} , (10)

where µj,l,m = E
(
W(j−1)m+lφ

′(Ḡj,m)
)

= µm. The summands Ak and Ck are
sums of functions of m-step non-overlapping uniform spacings. Such statistics
are well-studied in the literature; the results needed are given by Mirakhmedov
(2005) and Mirakhmedov & Jammalamadaka (2013). We will use these facts
below. Note, ∫ 1

0

gθ0(u)du = 0 and
∫ 1

0

g2θ0(u)du = I(θ0), (11)

the Fisher information in a single observation. Taking this into account, and
by using Corollary 1 and Remark 1 of Mirakhmedov (2005), and Lemma 1, we
obtain that the limiting distribution of Ak is N (0, σ̃2

A), which we denote as

Ak
d∼N (0, σ̃2

A), (12)
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A class of asymptotically efficient estimators based on sample spacings 15

where

σ̃2
A =

1

k

k∑
j=1

V ar

(
1

m

m∑
l=1

Wlφ
′(Ḡj,m)gθ0(u(j−1)m+l)

)

− 1

km

{
1√
k

k∑
j=1

Cov

(
1

m

m∑
l=1

Wlφ
′(Ḡj,m)gθ0(u(j−1)m+l), Gj,m

)}2

= σ̃2
1A − σ̃2

2A. (13)

We have

σ̃2
1A =

1

k

k∑
j=1

E

(
1

m

m∑
l=1

W(j−1)m+lφ
′(Ḡj,m)gθ0(u(j−1)m+l)

)2

−1

k

k∑
j=1

{
E

(
1

m

m∑
l=1

W(j−1)m+lφ
′(Ḡj,m)gθ0(u(j−1)m+l)

)}2

= σ̃2
1,1A − σ̃2

2,1A. (14)

Because m = o(n) and |u(j−1)m+l − j/(k+ 1)| = o(1) as n→∞, uniformly in
j and l, the continuity of gθ0 , the equalities (11) and Lemma 1 imply that
both k−1

∑k
j=1 g

2
θ0

(u(j−1)m+l) and k−1
∑k
j=1 gθ0(u(j−1)m+s)gθ0(u(j−1)m+l)

converge to the same limit I(θ0) for all s, l = 1, ...,m. Therefore, we obtain

σ̃2
1,1A =

1

k

k∑
j=1

1

m2

m∑
l=1

E
(
W(j−1)m+lφ

′(Ḡj,m)
)2
g2θ0(u(j−1)m+l)

+
1

k

k∑
j=1

1

m2

k∑
s=1

k∑
l=1

s 6=l

gθ0(u(j−1)m+s)gθ0(u(j−1)m+l)

×E
(
W(j−1)m+sW(j−1)m+lφ

′2(Ḡj,m)
)

=
1

m2

m∑
l=1

(
E
(
Wlφ

′(Ḡm)
)2 1

k

k∑
j=1

g2θ0(u(j−1)m+l)

)

+
1

m2

m∑
s=1

m∑
l=1

s6=l

E
(
WkWlφ

′2(Ḡm)
) 1

k

k∑
j=1

gθ0(u(j−1)m+k)gθ0(u(j−1)m+l)

= I(θ0)
1

m2

{
m∑
s=1

E
(
Wsφ

′(Ḡm)
)2

+

m∑
s=1

m∑
l=1

s6=l

E
(
WsWlφ

′2(Ḡm)
)}

(1+ o(1))

= I(θ0)
1

m2
E

{
φ′2(Ḡm)

(
m∑
s=1

W 2
s +

m∑
s=1

m∑
l=1

s6=l

WsWl

)}
(1 + o(1))

= I(θ0)E
(
Ḡmφ

′(Ḡm)
)2

(1 + o(1)) . (15)
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16 M. Ekström et al.

Similar arguments give

σ2
2,1,A = I(θ0)

(
1

m

m∑
k=1

E(Wkφ
′(Ḡm))

)2

(1 + o(1))

= I(θ0)
(
E(Ḡmφ

′(Ḡm))
)2

(1 + o(1)) . (16)

By substituting (15) and (16) into (14) we get

σ2
1A = I(θ0)V ar

(
Ḡmφ

′(Ḡm)
)

(1 + o(1)) . (17)

Next, we have

σ2
2A =

1

m

{
1

k

k∑
j=1

Cov

(
1

m

m∑
l=1

Wlφ
′(Ḡm)gθ0(u(j−1)m+k), Gj,m

)}2

=
1

m

(
1

m

m∑
l=1

Cov
(
Wlφ

′(Ḡm), Gm
) 1

k

k∑
j=1

gθ0(u(j−1)m+l)

)2

= o(1),

by Lemma 1 and the first equality in (11). This together with (17) and (13)
conclude that σ̃2

A = I(θ0)V ar
(
Ḡmφ

′(Ḡm)
)
. Thus, by (12),

Ak
d∼N

(
0, σ2

AI(θ0)
)
, (18)

where σ2
A = V ar

(
Ḡmφ

′(Ḡm)
)
. Let U(j) = Fθ0(ξ(j)) be the order statistics of

Uj = Fθ0(ξj). As in (9), |U(j) − uj | = Op(n
−1/2) as n → ∞, uniformly in

j, implying that |Ũ(j) − U(j)| = Op(n
−1/2) as n → ∞, uniformly in j. This,

together with the continuity of gθ0 and the fact that µj,l,m = µm for all j and
l, imply that Bk has the same asymptotic distribution as

1

m
√
k

k∑
j=1

m∑
l=1

µj,l,mgθ0(U((j−1)m+l)) =
µm

m
√
k

k∑
j=1

m∑
l=1

gθ0(U(j−1)m+l),

which is a sum of independent r.v.’s. Hence, by (11) and the central limit
theorem,

Bk
d∼N

(
0,m−1I(θ0)µ2

m

)
. (19)

By the asymptotic normality of a sum of functions of uniform m-spacings
(Corollary 1 in Mirakhmedov (2005)), the continuity of gθ0 , and (9), we obtain

Ck
p−→ 0. (20)

Next, consider Cov (Ak, Bk). We shall use arguments like those on p. 39 in
Ghosh (1997). That is, we use a two term Taylor expansion for gθ0(Ũ(j−1)m+s)
at u(j−1)m+s, Theorem 2.2(1) of Mirakhmedov & Jammalamadaka (2013), and
Lemma 1. Also, note that the r.v.’s Ũ(j−1)m+s and Ũ(i−1)m+s, s = 1, ...,m, with
j 6= i, are asymptotically independent, because the intervals I(j−1)m+s and
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I(i−1)m+s are mutually exclusive. Then, by taking (9) and (11) into account,
and after some long and tedious algebra,

Cov(Ak, Bk)

=
1

m2k

k∑
j=1

k∑
i=1

m∑
l=1

m∑
s=1

Cov
(
nD(j−1)m+lφ

′
( n
m
Dj,m

)
gθ0(u(j−1)m+l),

µj,s,mgθ0(Ũ(i−1)m+s)
)

=
µm
m2k

k∑
j=1

m∑
l=1

m∑
s=1

{
Cov

(
nD(j−1)m+lφ

′
( n
m
Dj,m

)
gθ0(u(j−1)m+l), Ũ(j−1)m+s

)
+ o(1)

}
= −I(θ0)

µm
m2

m∑
l=1

m∑
s=1

Cov(Wlφ
′(Ḡm),Ws) + o(1)

= −I(θ0)µmCov(Ḡmφ
′(Ḡm), Ḡm) + o(1)

= −I(θ0)µmE
(
Ḡ2
mφ
′(Ḡm)

)
+ I(θ0)µ2

m + o(1), (21)

since EḠm = 1. Thus, from (10), (13), (18), (19), (20) and (21) we obtain

√
nS′n(θ0)

d∼N (0, I(θ0)σ2
φ), (22)

where σ2
φ is defined in (6). Let us consider the denominator of (8). Write

S′′n(θ0) =
1

k

k∑
j=1

φ′′(kDj,m)

(
m∑
l=1

kD′(j−1)m+l(θ0)

)2

+
1

k

k∑
j=1

φ′(kDj,m)

m∑
l=1

kD′′(j−1)m+l(θ0) = ∆k +∇k. (23)

We have

∆k=
1

k

k∑
j=1

φ′′(kDj,m)

m∑
s=1

(
kD(j−1)m+s

)2[D′(j−1)m+s(θ0)

D(j−1)m+s

]2
+

1

k

k∑
j=1

φ′′(kDj,m)

×
m∑
s=1

m∑
l=1

s6=l

kD(j−1)m+skD(j−1)m+l

D′(j−1)m+s(θ0)

D(j−1)m+s

D′(j−1)m+l(θ0)

D(j−1)m+l

= ∆1k +∆2k. (24)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18 M. Ekström et al.

By the mean value theorem,

∆1k =
1

k

k∑
j=1

φ′′(kDj,m)

m∑
s=1

k2D2
(j−1)m+sg

2
θ0(Ũ(j−1)m+s)

=
1

k

k∑
j=1

φ′′(kDj,m)

m∑
s=1

k2D2
(j−1)m+sg

2
θ0(u(j−1)m+s)

+
1

k

k∑
j=1

φ′′(kDj,m)

m∑
s=1

k2D2
(j−1)m+s

(
g2θ0(Ũ(j−1)m+s)− g2θ0(u(j−1)m+s)

)
.

The second term here tends to zero in probability due to continuity of the
function gθ0 and (9). For the first term the central limit theorem (Corollary 1
and Remark 1 of Mirakhmedov (2005)) is valid with asymptotical expectation

1

k

k∑
j=1

E

(
φ′′(Ḡm)

1

m2

m∑
s=1

W 2
s g

2
θ0(u(j−1)m+s)

)

=
1

m2

m∑
k=1

E(W 2
kφ
′′(Ḡm))

1

k

k∑
j=1

g2θ0(u(j−1)m+k)

= I(θ0)
1

m2

m∑
s=1

E(W 2
s φ
′′(Ḡm)) (1 + o(1)) ,

because of Lemma 1 and (11). Hence,

∆1k
p∼ I(θ0)E

(
φ′′(Ḡm)

1

m2

m∑
k=1

E(W 2
k )

)
.

By using the same arguments one can show that

∆2k
p∼ I(θ0)E

(
φ′′(Ḡm)

1

m2

m∑
s=1

m∑
l=1

s6=l

WsWl

)
.

Thus, putting last two relations into (24) we obtain

∆k
p∼ I(θ0)E

(
Ḡ2
mφ
′′(Ḡm)

)
. (25)

Consider ∇k. By noting that

D′′(j−1)m+l(θ0) = D(j−1)m+l

{(
D′(j−1)m+l(θ0)

D(j−1)m+l

)′
+

(
D′(j−1)m+l(θ0)

D(j−1)m+l

)2}
,

and by using Lemma 1, we see that

∇k
p∼EḠmφ′

(
Ḡm
)(∫ 1

0

g′θ0(u)du+

∫ 1

0

g2θ0(u)du

)
.
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On the other hand, it is easy to see that
∫ 1

0
g′θ0(u)du = −I(θ0), and therefore,

by (11), ∇k
p→ 0. This fact, together with (23) and (25), imply that

S′′n(θ0)
p∼ I(θ0)E

(
Ḡ2
mφ
′′(Ḡm)

)
. (26)

Similar arguments show that

(θ̂n − θ0)S′′′n (θ̃0)
p−→ 0. (27)

Theorem 2 follows from (8), (22), (26), and (27). ut

Proof of Corollary 1 By straightforward algebra we find that

em(φλ) =
m

λ2

(
Γ (m)Γ (m+ 2(1 + λ))

Γ 2(m+ 1 + λ)
− 1− 1 + 2λ

m

)
.

By Stirling’s approximation formula, Γ (x + 1) =
√

2πx(x/e)x(1 + O(x−1)),
and we find for large enough m that

em(φ) = 1 + (1 + λ)2m−1 + cλm
−2,

where cλ is a constant depending on λ only. Hence, the corollary follows from
Theorem 2. ut
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